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This paper is part of a program investigating symmetries that are defined at a 
physical or observational level rather than purely geometrically. Here we 
generalize previous work on dynamical "matter" symmetries of relativistic 
gases. If the matter symmetry vector is surface-forming with the dynamical 
Liouville vector, then Einstein's equations reduce it to a Killing symmetry of the 
metric. We show that this conclusion is unaltered if the gas particles are subject 
to a nongravitational force (including the electromagnetic force on charged 
particles) or if the gravitational field obeys higher-order field equations. In the 
Brans-Dicke theory, the matter symmetry reduces to a homothetic symmetry of 
the mettle. This is also the case for a generalized conformal symmetry in 
Einstein's theory. We consider the problem of relaxing the surface-forming 
assumption in an attempt to determine whether there are dynamical symmetries 
that do not necessarily reduce to geometrical symmetries of the metric. 

1. I N T R O D U C T I O N  

M u c h  work  has been done  on symmetries in fluid spacetimes (see 
Kramer  et  al., 1980; Coley and Tupper ,  1990; and references therein). The 
approach  in mos t  cases has been to assume, sometimes wi thout  clear 
physical or  observational  reasons, a geometrical  symmetry  o f  spacetime 
and then to consider the consequences for  the fluid properties. Similarly, 
mos t  work  on symmetries in relativistic kinetic theory starts f rom a 
geometrical  symmetry  o f  spacetime and investigates the consequences for  
the distr ibution funct ion f ( x ,  p) (see Maar tens  and Mahara j  and references 
therein). This paper  is mot ivated  by a desire to define a fundamenta l  
symmetry  at a phys ica l l y  observat ional  or dynamica l  level rather  than purely 
geometrically. Previous at tempts  include the postulate o f  uni form thermal  
histories o f  Bonnor  and Ellis (1986), which aimed to give an observational  
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definition of homogeneity in fluid spacetimes; dynamical path symmetries 
of particle motion (see Maartens and Taylor, 1993, and references therein); 
and the dynamical matter symmetries defined in relativistic kinetic theory 
by Berezdivin and Sachs (1973). In this paper, we take the view that any 
fundamental concept of dynamical symmetry should have a foundation in 
the microscopic model of relativistic kinetic theory. Therefore, we aim to 
generalize the work of Berezdivin and Sachs (1973) on dynamical matter 
symmetries. A previous paper (Maartens and Taylor, 1993) dealt with 
generalizing work on dynamical path symmetries, 

There is an important distinction between the dynamical matter sym- 
metries of Berezdivin and Sachs and dynamical path symmetries of particle 
motion (Maartens and Taylor, 1993). The latter symmetries are defined by 
an invariance of phase space orbits. It is not clear whether they have any 
observable consequence, since they map orbits in phase space into each 
other. Dynamical matter symmetries, on the other hand, may be defined 
directly in terms of measurements of the particle distribution function 
(Berezdivin and Sachs, 1973). It is shown in Maartens and Taylor (1993) 
that matter and path symmetries are equivalent only if they both arise from 
an underlying homothetic symmetry of the spacetime metric. 

Our investigation of matter symmetries aims to clarify the relation 
between these dynamical symmetries and geometrical symmetries. Al- 
though matter symmetries in relativistic kinetic theory are an important 
concept in a dynamical approach to symmetries, they have received little 
attention. We have recently situated matter symmetries within a broader 
class of vector fields on the tangent bundle (Berezdivin and Sachs, 1973). 
Oliver and Davis (1979) considered some mathematical properties of 
matter symmetries in the context of classifying geometrical symmetries. 
However, as far as we are aware, no work has been done to extend the 
original kinetic theory results of Berezdivin and Sachs. We aim to do so in 
this paper. 

Berezdivin and Sachs were unable to find a solution to the general case 
and had to assume that the matter symmetry vector field and the Liouville 
vector field (geodesic spray) were 2-surface-forming in phase space. With 
this assumption, they showed that Einstein's field equations imply that the 
dynamical matter symmetry necessarily arises from an isometry of the 
spacetime. In other words, the field equations transmit the dynamical 
symmetry directly to the geometry. We try to generalize their result in 
various directions: (a) considering the effect of nongravitational forces; (b) 
considering alternative field equations; (c) generalizing the definition of 
matter symmetry to a conformal matter symmetry; and (d) considering 
matter symmetry vector fields that form 3-dimensional integral surfaces 
with the Liouville vector field. 
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Section 2 contains a brief summary of relativistic kinetic theory for a 
collision-free gas. Section 3 is a brief review of lifted vector fields and 
transformations on the tangent bundle, which includes the Berezdivin and 
Sachs matter symmetry as a particular case. Section 4 outlines the results of 
Berezdivin and Sachs and provides an alternative derivation of their main 
result. We believe that our derivation is more direct and clear. Also, it may 
be extended to the more general cases, unlike the Berezdivin and Sachs 
methods. Section 5 details the extensions and generalizations made to the 
results of Section 4. We find that the presence of a nongravitational 4-force 
(including electromagnetism) does not qualitatively alter the Berezdivin and 
Sachs result, but merely leads to an additional symmetry constraint on the 
force field. The restrictive Berezdivin and Sachs result also holds for 
higher-order field equations. However, the Brans-Dicke theory allows for a 
less restrictive behavior: the matter symmetry arises from a homothetic 
symmetry of the metric. The long-range scalar field of the theory inherits this 
homothetic symmetry. The generalization of the matter symmetry by 
introducing a conformal matter symmetry is shown to force the spacetim e to 
admit a homothetic metric symmetry. Finally, the attempt to generalize the 
2-surface-forming condition to a 3-surface-forming condition is unsuccessful. 
We are unable to solve the equations that arise from this condition, although 
we can show that in a special case the spacetime admits a Killing tensor. 

In all cases the results and indications point to a surprising "resilience" 
of geometrical symmetries, in the sense that they are the source for 
dynamical matter symmetries [a similar point holds for path symmetries 
(Maartens and Taylor, 1993)]. In the concluding Section 6 we discuss why 
this may be the case and point to possible generalizations. 

2. COLLISION-FREE GAS 

We first give a brief review of the relativistic kinetic theory of a 
collision-free gas [Maartens and Maharaj (1985) and references therein for 
further details]. The distribution function f (x ,  p) determines the number of 
particles near each event x in spacetime M with 4-momenta near p. The 
momentum space Px is the region in the tangent space TxM consisting of 
future-directed, nonspacelike tangent vectors. Phase space P is then the 
union of all Ix .  The mass-shell Px(m) consists of all 4-momenta pa such 
that papa= --m 2. The mass-shells are the fibers of the phase space P(m) for 
particles of rest mass m. Then P(m) is a hypersurface in P, which is in turn 
a region of TM, the tangent bundle. Local coordinates {x a} on M induce 
local coordinates {x a, pb} on TM, and P(m) is given locally by 

gab(X~)pap b = --m z (1) 
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By choosing p~ (0t = 1, 2, 3) as coordinates on each mass-shell, we induce 
local coordinates {x", p~) on P(m) with p0 determined by (1) at each point 
of P(m). Since free uncharged particles not subject to collisions follow 
geodesics, all possible uncharged particle motions are given by (1) and 

dx" dPa - F % p ~ p  ~ (2) 
dv = P a, "~v = 

where v is an affine parameter; for m > 0, v = (proper time)/m. The family 
of intersecting geodesics of M represented by (2) is naturally lifted 
[xa(v)-} (xa(v), dxa/dv)] into a nonintersecting congruence of phase orbits 
in P. The tangent vector field to these phase orbits is the Liouville vector 
field (or geodesic spray) 

From (1) and (3), L(m)=  0, so that L is tangent to P(m). Further- 
more, f is constant along the phase flow since the gas is collision-free. This 
yields the Liouville (or Vlasov) equation: 

L ( f )  = 0 (4) 

In the case of charged particles (charge e), the Liouville vector field (3) 
generalizes to 

0 
L ,  = L + eFabp bap a (5) 

where Fab is the electromagnetic field tensor. Equation (5) follows since 
the integral curves of L,  are the lifts of charged particle trajectories: 
Dpa/dv =eFabp b. Then the Liouville equation (4) generalizes to the 
charged particle case: L , ( f )  = 0. 

The presence of a velocity-independent, nongravitational 4-force 
tuba(x) implies that the particle trajectories are given by Dpa/dv = h a. Then 
the natural lifts of these trajectories are the integral curves of the general- 
ized LiouviUe vector field for motion under a velocity 4-force: 

0 
L ,  = L + h a (6) 

op a 

In the absence of collisions, the Liouville equation (4) again generalizes to 
L , ( f )  =0.  

The second moment of f defines the kinetic energy-momentum tensor 

T "b -- fp"pbfdP (7) 
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where dP =(_g)1/2 @0123 and the integration is over Px. For a gas of 
identical particles (mass m), dP = (-g)l /2dp~23/(-Po) and the integration 
is over Px(m). In the case of a self-gravitating gas, the source of the 
gravitational field is (7). The Einstein field equations 

Gab =- Rot, -- �89 = Tab (8) 

and equation (4) form the self-consistent Einstein-Liouville system of 
equations, since the integrability conditions 

Tab;b = 0 (9) 

follow identically from (4) and (7). 
The Einstein-Liouville system of equations can be generalized to 

alternative gravitational field equations. Fourth-order gravitational field 
equations are derived from a quadratic gravitational Lagrangian (Barrow 
and OttewiU, 1983): 

G*b =- Rab - -  �89 + 2q[R(Rab 1 -- ~Rgab) -- R;ab + gab 5 R ]  

1 cd 1 
+ r[2(Rabed --"~gabRcd)R -- R.ab -t- ~gab D R  + []Rab ] = Tab (10) 

where q and r are constants, [] = gabVaVb, and (9) follows identically from 
(10), consistently with (4) and (7). The scalar-tensor Brans-Dicke gravita- 
tional field equations are (Misner et al., 1993) 

a~ab . ~ _  ~)(Rab __�89 ) __ co(~b;aq~;b 1 ;c -- ~gab~);c~ ) )I~P -- (~P;ab -- gab [] ek) = Tab 

(11) 

where co is a coupling constant, and (9) implies []~b = (3 + 2co)-lTaa. 

3. LIFTED TRANSFORMATIONS ON THE TANGENT BUNDLE 
AND MATTER SYMMETRIES 

In this section we situate the matter symmetries of Berezdivin and 
Sachs (1973) within a general class of vector fields on T M  [see Maartens 
and Taylor (1993) and the references therein for further details]. 

The coordinate basis vectors {O/Ox a, d/Op b} on T M  do not transform 
covariantly. In order to provide a covariant splitting of vector field 
components on TM, it is necessary to use the anholonomic connection 
basis of horizontal and vertical vector fields 

0 0 0 n =ox-rL p  vo=o- (12) 
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where 

[Ha, Hb]=--RdabpcVd, [aa, Vb]=I'C,,bVc, [Va, Vb] = 0 (13) 

Then any vector field on TM can be split covariantly into components with 
respect to {Ha, Vb }, where the components and the basis vectors transform 
covariantly (i.e., like rank 1 tensors on M). The Liouville vector field (3) 
can be written as the basis as L = pal-Ia. 

Any vector field Y: on M generates point transformations along its 
integral curves. In addition, we can define a smooth local rule governing 
the transport of tangent vectors along the integral curves of Ira. For a 
linear transport rule, any tangent vector u ~ at x is transported to u '" at x', 
where u'~= f~b(X; C)U b. The linear transport lifts are the vector fields on 
TM which define these transformations (Maartens and Taylor, 1993): 

where 

yA= ya(x)H,, + A%(x)pbV~ (14a) 

A%(x) = 0ta%(x; 0)10E + r%(x)Y<(x) (14b) 

is the rank 2 tensor field on M which covariantly defines the transport of 
tangent vectors along Ya. Suitable choices of A% allow us to regain all of 
the standard lifted vector fields as special cases of (14) (Maartens and 
Taylo r, 1993). In particular, the matter symmetries of Berezdivin and Sachs 
are members of the subclass of (14) in which the transport rule fl is Lorentz 
transport along ya. This implies 

A(ab) = 0 (15a) 

The matter symmetry vector fields in addition leave the distribution func- 
tion invariant: 

yA( f )  = 0 (15b) 

Note that (15a) implies yA(m)=0.  Thus by (1), (3), (4), and (15) the 
vector fields L and yA are everywhere tangent to the 6-dimensional 
hypersurface {m = const, f = const} of P. Our definition is equivalent to 
the original definition of Berezdivin and Sachs: a matter symmetry arises 
when observers at different points along ya curves, using Lorentz frames, 
measure the distribution to be the same. 

Matter symmetries in fact arise in a well-known class of distribu- 
t ions - those  which are isotropic in momentum space relative to some 
4-velocity field u~: 

f ( x ,  p) = F(x, u,p a) (16) 
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Clearly f is invariant under the isotropy group of u a in momentum space, 
i.e., under the rotation subgroup of the Lorentz group, with Lie algebra 
generators of the form A~bpba/ap a, where AabU b = 0  =A(ab). Thus the 
generators are matter symmetry vector fields that are vertical (Y"= 0) 
(Berezdivin and Sachs, 1973). Ehlers et al. (1968) showed that for a 
dynamically isotropic distribution of the form (16) the spacetime is either 
stationary or Robertson-Walker. In this case, matter symmetries give rise 
to very restrictive geometrical symmetries. 

An important special case of linear transport lift arises when the 
transport rule is Lie transport along Y~, so that A~b = Y~;b and we write the 
complete (or Lie) lift as 

~1 = Y~-I~ + Y~;bpbV~ (17) 

The rate of change of the distribution function under a spacetime symmetry 
Y~ is then ~ ' ( f )  (Maartens and Maharaj, 1985; Ehlers, 1971). By (15a), for 
a complete lift (17) to be a matter symmetry, Y" must be a Killing vector 
field. 

An alternative approach to dynamical symmetries is via invariance of 
the phase orbits rather than invariance of the distribution function as in 
(15b). A vector field Z on phase space is a dynamical path symmetry of L 
if it maps curves of L (phase orbits) into each other, i.e. (Maartens and 
Taylor, 1993) 

[ Z, L] = lL (18) 

for some scalar l(x, p). If l = 0, then Z is known as a dynamical Lie 
symmetry (in this case, the parameter is invariant under the mapping of the 
phase orbit). A matter symmetry that is also a path symmetry is the complete 
lift o f  a homothetic Killing vector field (independently of any field equations 
(Maartens and Taylor, 1993). 

The identity (Ehlers, 1971) 

leads, for W(f)  =f ,  to 

Tab / bHc ;c = pap ( f )  dP 

which gives, using integration by parts, 

f papbyA(f)  dp Tab yc TCb TaCAb c ACcT~b = ;c - A ~  - - (19) 
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Equation (19) holds for any linear transport lift of  the form (14a). If  yA is 
a matter Symmetry, then (15) and (16) imply 

. W y T  ab= (Aac - Ya;c)TCb + TaC(Ab~ - Yb;c ) (20) 

which was given by Berezdivin and Sachs (1973). Using the field equations 
for T ab , (20) determines the fundamental link between dynamical matter 
symmetries and the geometrical properties of  spacetime. In fact, Berezdivin 
and Sachs did not use equation (20). In this paper (20) is the crucial 
equation, and we are able to simplify considerably the derivation of  their 
result by using it. 

It is not surprising, but nontrivial to show, that matter symmetries 
form a Lie algebra. Using (13)-(15),  we find that for constants s and t 

sY A + tZ n = W C 

where W = s Y + t Z  and C = sA  + tB,  which clearly implies Cr = O. Also 
(Maartens and Taylor, 1993) 

[Y", z"] = [Y, z] c 

where 

C = V r B  - V z A  --  [A, B] --  R ( Y ,  Z )  

is a rank 2 tensor field on M and R ( Y ,  Z)ab = Rab~aY*Z a. By the sym- 
metries of Rab~a and the skewness of  A and B, it follows that C is skew and 
consequently that [Y, Z] c is a matter symmetry. 

Berezdivin and Sachs (1973) pointed out that if yA is a matter 
symmetry, then any scaling that is constant on momentum space 

yA _, VX = e ~(x)yA (21a) 

preserves its properties (15) as a matter symmetry, so that only the 
directions of  ya and Aob on M are important and not their magnitudes. We 
note also that scaling preserves the Lie algebra since it is linear and since 

[e~<x)yA, e,<x)Zn] = e ~ ) +  ,<x){[y, Z]C + (Aav~b)Z n _ (L#zA)yA} 

(Thus the Lie algebra of  matter symmetries is infinite-dimensional over the 
phase space, but not on each momentum space.) We will refer to (21a) as 
a gauge transformation, so that the basic properties of  matter symmetries 
are gauge invariant. As expected, the key equation (20) is gauge invariant. 
Equation (21a) gives rise to an important gauge freedom: 

Ya;b = eX[Ya;b + Ya2;b] (21b) 

In particular, if Ya;b = Yaab, where ata;bl = 0, then by (21b), Ya may be 
rescaled to a Killing vector field. 
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4. THE BEREZDIVIN AND SACHS RESULT 

In deriving their main result Berezdivin and Sachs do not motivate the 
2-surface-forming condition. It is diffiicult to see any alternative approach 
in searching for conditions implied by the matter symmetry properties. 
However, it is not clear what physical meaning may be attached to this 
assumption. Geometrically, the assumption is a natural generalization of a 
dynamical path symmetry: the phase orbits are mapped by yA into paths 
within the yA, L 2-surfaces, rather than into each other (i.e., into the L 
1-surfaces). 

At each point in phase space, yA and L span a 2-plane in the tangent 
space. However, in general the tangent 2-planes may not mesh together to 
form 2-surfaces. By Frobenius' theorem the condition for yA and L to be 
2-surface-forming is that [yA, L] be in the tangent 2-plane at each point. If  
this condition does not hold, [yA, L] together with yA and L generates 
3-planes, which, in turn, may or may not mesh together to form 3-surfaces. 
The most general case is that the matter symmetry yA and dynamical 
vector field L generate 6-dimensional integral surfaces. [Berezdivin and 
Sachs (1973) claim that the most general case is 8-dimensional; however, 
the constraint equations L(m) = 0 = L( f ) ,  yA(m) = 0 = yA( f )  restrict the 
integral curves of L and yA (and all their Lie brackets) to lie in the 
intersection of the hypersurfaces {m = const} and {f = const}, which is of 
dimension 6]. Berezdivin and Sachs were unable to make progress with the 
general case, and assumed that yA is a 2-surface-forming with L. Using this 
assumption, they proved the following result (Berezdivin and Sachs, 1973). 

For a gas obeying the Einstein-Liouville equations, a correctly scaled matter 
symmetry that is 2-surface-forming with the Liouville vector field is the 
complete lift of  a Killing vector field on spacetime. 

In this section we will outline an improved derivation of their result, 
which, unlike their derivation, may be applied to the case when yA is not 
2-surface forming with L (see Section 5). The 2-surface-forming condition 
is 

[yA, L] = k(x, p)yA + l(x, p)L (22) 

for some scalars k and l on P. By (18), Y* is a dynamical path symmetry 
i f k  =0.  By (3) and (12)-(15) 

[yA,  L] : (Aab --  Ya;b)pbH . + (.Rabcd Yd-  A%;c)pbpcV,, (23) 

By (21) and (22), the 2-surface property is gauge invariant, with gauge 
freedom 

k" = k - 2;,,p", f =  eXl (24) 
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Thus there is a gauge freedom to scale away k provided it is of the form 
k ( x , p ) = o ~ ( x ) p  a, where ~E~;bl=0. (This will be shown to be the case 
below.) Then in this case V x is a dynamical path symmetry. (Clearly the 
dynamical path symmetry property is not invariant under the matter 
symmetry gauge transformations.) 

Expanding k and 1 on each momentum space 

k(x,  p) = ~(x) + ~,,(x)p" + ~,,b(x)p"p b + " "  (25a) 

l (x ,p)  = ig(x) + ~a(x)p a + ~,~t,(x)p"p t' + ' ' "  (25b) 

we note that the gauge freedom (24) implies ~ - ~ - 2 ; , p ~ ,  /~ov. .+~ 
ea/~=,...+ (r =0,  1, . . . ) .  Substituting (25) into (22) and comparing with 
(23) yields a system of equations in powers of pa. TO fourth order these 
give 

~Y~ = 0 = o~A.b i26a) 

A a b -  Ya;b = Y,,~ + Bgab (26b) 

Ra(bc) d y d  - -  Aa(b;c ) = Aa(b Otc) (26c) 

YaO~(bc) + ga(bflc) = 0 = YaO~(bcd) "91" ga(bflcd) (26d) 

Aa(bO~ed) = 0 = Aa(bO~cde) (26e) 

The higher-order equations have the same form as (26a), (26d), and (26e). 
Then it is easily shown that the only possible nonzero coefficients are ~ 
and/L so that k(x,  p) = O~a(X)p" and l(x, p) =/~(x). Covariantly differentiat- 
ing (26b) and then symmetrizing on ab and antisymmetrizing on bc yields 
(Berezdivin and Sachs, 1973) 

g,b~;c - ~;<,gb)c -/~[0k, g0)c - g ,  bcc~] + [Ya0~[b;d + Yb~[.;~]) = 0 (27) 

Assuming/~ ~ 0, we can choose the gauge potential in (21) and (24) to be 
2 = - log /L  so that (27) reduces to 

g~b0~ -- C~<-gb)~ + (Y-~fb;~l + Yb~ = 0 (28) 

Following Berezdivin and Sachs (1973), we contract (28) with Ca~b, where 
~a is arbitrary subject to ~ :~ 0, ~aF= = 0 = r Then (28) yields 07~ = 0, 
so that V x is a dynamical path symmetry by (18). Thus if fl ~ 0, the 
2-surface-forming assumption reduces to the assumption that the matter 
symmetry is a dynamical path symmetry--and therefore it is the complete 
lift of  a homothetic Killing vector (Maartens and Taylor, 1993). Indeed, by 
(26b) (fl ~ 0) 

Y',,;b=+i~--g,,b =*...W~g,,b=--2gab (29a) 
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At this point Berezdivin and Sachs employed an involved and ingenious 
argument to show that (29a)produces a contradiction when the field 
equations (8) are invoked. However, using (20), we can bypass their 
argument to immediately arrive at the result. Equation (20) with (29a) 
gives 

L~a?T ab = 2T ab (29b) 

However, Einstein's field equations (8) with (29a) imply 

S~ T Tab = 4 Tab (30) 

using the identities for homothetic Lie derivatives (Maartens et al., 1986). 
This contradiction means fl = 0, and (29a) is not true. (Note that a 
nonzero cosmological constant does not affect this result.) The importance 
of (20) is evident when comparing the complicated arguments of Berezdivin 
and Sachs with the straightforward derivation above. With fl = 0, (27) 
implies 0tta;b j = 0, so that (locally) eta = 2;a for some 2. If we take 2 as gauge 
potential, (21) and (26b) show that Ya;b = gab, SO that F is Killing and yx  
is its complete lift. We note that since k- = 0 = l, yx  is not only a dynamical 
path symmetry of L, but furthermore a Lie symmetry (Maartens and 
Taylor, 1993). Thus it turns out that the 2-surface assumption reduces to 
the condition that the matter symmetry is also a Lie symmetry of L. 

Berezdivin and Sachs have then shown that, at least in the 2-surface- 
forming case, the Einstein field equations reduce the dynamical symmetry 
to a geometrical symmetry. In Section 5 we will investigate whether we can 
avoid this restrictive result by considering nongravitational forces, by 
looking at alternative field equations, or by relaxing the 2-surface-forming 
condition. 

5. EXTENSIONS OF THE BEREZDIVIN AND SACHS RESULT 

5.1. Gas Particles Subject to Nongravitational Forces 

We follow Berezdivin and Sachs (1973) in assuming that yA is 
2-surface-forming with L, but we consider whether nongravitational forces 
may alter the result that the dynamical matter symmetry reduces to a 
Killing symmetry. We thus investigate the possibility that the dynamical 
symmetry degenerates to a geometrical symmetry mainly because the 
particles are in free fall. In fact this is not the case; an external force does 
not qualitatively alter the conclusion of Section 4. 

First consider the case of charged particles, where the 4-force is the 
Lorentz force on each particle due to the collectively generated electromag- 
netic field. Using the 2-surface-forming condition (22), with the generalized 
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Liouville vector field (5) and the definition (14) of the matter symmetry, we 
get the charged particle generalization of (23), 

[Y", L.] = k(x,  p)yA + l(x, p)L. 

= (A a b -- Ya;b)pbH . 

+ {e(Fab;c yc + IF, A]"b)p b + (Rabcd Ya -- Aab;c)pbpC}Va (31) 

which yields two conditions: 

(A% -- ya;b)pb = k Y "  + lp" (32a) 

e(Fab;~ Y~ + [F, A]ab)p b + ( Rabcd Yd -- Aab,~)pbp ~ = kA"bp b + IF~bp b (32b) 

Equation (32a) is identical to the equation for the neutral (e = 0) case in 
Section 4, and using the expansions (25) again leads to k ( x , p ) =  
a , (x)p  a, l(x, p) = fl(x). An argument identical to that of Section 4 shows 
that fl = 0, a= = •;a, and V x is the complete lift of the Killing vector field 
g a. Then (32b) gives the additional symmetry condition that the electro- 
magnetic field be invariant under the Killing symmetry: 

f f  ~F,,b = 0 

Thus the electromagnetic force fails to prevent the dynamical matter 
symmetry from reducing to a Killing symmetry. On the contrary, the 
dynamical matter symmetry forces the electromagnetic field to obey the 
same geometrical symmetry as the spacetime metric. 

The same conclusion emerges when we look at a velocity-independent 
nongravitational 4-force mn a. The 2-surface-forming condition with the 
generalized Liouville vector field (6) is 

[yA, L~g] ~-- k(x ,  p)yA _~_ I(X, . ) L .  

~- (Aab -- y~,b)pbH~ 

.jr_ {(ha;b yb  __ Aabhb) + (Rabcd y d  __ Aab;c)pbpC}Va (33) 

Equation (33) yields (32a) and the additional condition 

(h% yb _ A %h b) + ( R % a  yd  _ Aab,:)pbpC = k A  abpb "~- lh a (34) 

As before, (32a) leads to a Killing symmetry. Then (34) implies the same 
geometrical symmetry for the 4-force as for the spacetime metric: 

Le?h ~ = 0 

In summary: For a gas  subject to a Lorentz  or velocity-independent 4-force 
and obeying the Einstein-Liouvil le  equations, a matter symmetry  that is 
2-surface-forming with the Liouville vector f i eM reduces to a Killing symmetry.  
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5.2. Alternative Gravitational Field Equations 

The derivation of the results of Section 4 is dependent on the form of 
the field equations. We investigate the effect that alternative gravitational 
field equations have on this result. We find that the result is unchanged in 
the case of the higher-order field equations (10). However, the Brans- 
Dicke field equations (11) do not contradict the matter symmetry condition 
(20) in the event of a Ya being a homothetic Killing vector, provided the 
long-range scalar field q~ is self-similar. 

In Section 4, without using the field equations but assuming f l r  0, we 
reduced the 2-surface-forming condition to a single equation, (29a), with 
Fa a homothetic Killing vector, and we used the key equation (20) to derive 
(29b). We now show that the higher-order field equations are incompatible 
with (29). Using the general results for homothetic Lie derivatives 
(Maartens et al., 1986)and the field equations (10), we get 

s = 2(G*b -- Gab) (35) 

Then (10), (29b), and (35) imply Gab = 2Tab. Taking the Lie derivative of 
this, we get ~e~T,b = 0, which contradicts (29b). (Note the surprising result 
that these equations following from (35) have no explicit dependence on 
the coupling constants q and r of (10).) Once again we conclude that fl = 0. 

In summary: For a gas obeying the Liouville and higher-order field 
equations, a matter symmetry that is 2-surface-forming with the Liouville 
vector field reduces to a Killing symmetry. 

A qualitatively different result arises from the Brans-Dicke field 
equations (11). Using the general results for homothetic Lie derivatives, 
(11), and (29b), we find 

(1 "[- ~) ' / 2 ~) ) Z ab = - -  O,) ~) ' ( ~) a ~) b - -  l gab ~) C ~) c ) / ~) 2 

+ o~(cb'~4~b + 4~aCk'~ --gab4~'~4~c)/24~ 

- ~b'(~a;b -- gab []~b)/2q~ + (~ba; b - gab D~b')/2 (36) 

where ~b, = ~b;a and ~b' = ~ee~b. From the trace of (36) we see that self-sim- 
ilarity of the long-range scalar field 

~e?~b = -2~b (37) 

implies that (36) is identically satisfied. [Note that (37) not only echoes the 
homothetic symmetry of the metric tensor (40); but is also the necessary 
condition for 5ee([]~b ) =0.] Thus /3 r  is not ruled out, and V x is a 
dynamical path symmetry (not in general a Lie symmetry) that is the 
complete lift of a homothetic Killing vector. The Brans-Dicke field equa- 
tions (l l) and the matter symmetry conditions (29) are thus compatible, 
provided (37) holds. Consequently the result of Section 4 is relaxed to: 
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For a gas obeying the Liouville and Brans-Dicke fieM equations, a matter 
symmetry that is 2-surface-forming with the Liouville vector fieM reduces to 
a homothetic Killing symmetry provided the long-range scalar fieM trans- 
forms homothetically. 

5.3. Conformai Matter Symmetries 

It may be that the Berezdivin and Sachs invariance (15b) is too 
restrictive, and that a more genuinely dynamical symmetry will result from 
generalizing (15b). We try a conformal generalization: 

yA( f )  __ --2~b(x)f (38) 

where A(ab) = 0. [Note that (38) was also suggested by Oliver and Davis, 
(1979) in another context.] We retain the 2-surface-forming assumption 
(22) and derive (29) as before. Substituting (38) into the identity (19) gives 

~yT~b (A,c _ _Ya;c,]TCb _ _  TaC(Ab c _ y b )  =._2tpT~b (39) 
. /  

By (29) Y" is a homothetic Killing vector field. The gauge invariant (39) 
gives, with (29a), 

s  "b = (2 - 2qT)T "b (40) 

where ( =  ~/fl. Comparing (30) and (40), we see that ~h = - f t .  Thus we 
are not forced to conclude that fl = 0 as was the ease for a nonconformal 
matter symmetry. 

In summary: For a gas obeying the Einstein-Liouville equations, a 
conformal matter symmetry that is 2-surface-forming with the Liouville 
vector fieM arises from a homothetic symmetry on spacetime. 

It may be possible to generalize (15b) in other, more dynamical, 
directions. Our conformal generalization allows only a slight modification 
of the restrictive Berezdivin and Sachs result from a Killing to a homo- 
thetic symmetry. 

5.4. Matter Symmetries That Are Not 2-Surface-Forming with L 

Our final attempted generalization is the most difficult and the least 
conclusive. In the case when yA and L generate 3-surfaces, we are unable 
to determine whether in general the matter symmetry collapses to a 
geometrical symmetry. However, under special conditions we find that 
Y(a;b) is a Killing tensor. 

By (29) 

W -~ [yA,  L) = (Z~b -- Ya;b)pbH a + (RabcdY d -  A ab;e)pbpcV a (4]) 
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and the conditions that yA and L generate 3-dimensional integral surfaces 
are  

[L, W] = k(x,  p)yA + l(x, p)L + n(x, p)W (42a) 

[yA, W] = k ' (x ,  p)yA + l '(x, p)L + n'(x,  p)W (42b) 

for some scalars k, k', l, l', n, n' on P. Note  that the 3-surface property is 
gauge invariant: the gauge freedom (21) gives 

W = eZ[W - (2;,,pa)y A] (43a) 

= k - ~;abpap b "b (2;ap~) 2 + n(2;~p~), f =  ca/, ti = n + 22;~p ~ (43b) 

and more complicated gauge transformations for k', l', and n', which we 
will not use. 

Now by (3), (14a), and (41) 

[L, W] = 2A ~b;c -- Ya;b c -- RabcaYa)pbpCHa 

-]- (Rabce;d Ye  -}- 2Rabce Ye;a - RabceAe a - Aab;ca)pbp~pdVa (44) 

[yA, W] = (Aab;c y c  _ ya;b c y c  + Ya;c YC;b _ 2ya ;cAC b + A,,cACb)pbH~ 

+ {[Rabc~;a ye + Rabce Ye;d __ Aabc;d] ya  

+ 2R~bae yeAa c R,,ba ~ yeA a y~yd  A"  A a -- ;c --  Rabde ;c -- b;d c 

-]- Aab;d rd;c "~- Radce y e A a  -- Rabc~reAad}pbpWa (45)  

Owing to the complexity of  the right-hand sides of  ( 4 4 ) a n d  (45), the 
method of  Berezdivin and Sachs (1973) is not applicable. Our method of  
Section 4 carries over to this case; we expand k, l, and n in each momentum 
space to get (25) and 

n(x, p) = y(x) + y:(x)p ~ + yab(X)pap b + ' ' "  (46) 

The functions k', l', and n' in (42b) can be expanded in a similar way. 
Substituting (25), (46), and their primed counterparts into (42), and using 
(44) and (45), we obtain, after lengthy calculations, a system of equations 
in powers of  p: .  To third order, these give 

Y~ = 0 = ~A~b (47a) 

YaO~b + flgab + y(Aab -- Y:;b) = 0 (47b) 

Y,:%c) + g,,(b~:) + Aa(b Yc) --  Y:;(bT~)= 2A:(b;~) -- Y:;<bc) --R:@)a Yd 

(47c) 

Aa(b~c ) + 7[Ra(bc) d y a _  A:<b;c)] = 0 (47d) 
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Aa(b O~cd) "4- Ra(bclet YeY a) -- A,~O,c? d) = Rao~Lel,a) ye + 2Ra(b~l~ I Y~;a) 

- -  A,,(b;ca) -- Ra(bclel A ea) (47e)  

a '  Ya = 0 = o~'A,,b (48a) 

YaOt'b + fl'gab + '~'(Aab -- Ya;b) = AacACb  "Jff Aab;c y c  - -  Ya;bc yc  

+ Y~;~ Y~;b -- 2 Y~;~A ~b (48b) 

YaO~'(bc) + ga(bfl'c) + Aa(b])'c) -- Ya;(b])'c) = 0 (48C) 
/ __ e e A,,(b O~) + ?'[R,,(b~)d y d  __ A~O;O] _ [Ra(b)e; d y + Raoc)e  y ;d 

_ Aao;Od ] y d  + Ra(bldel ye  A ac) 

_ R,,oid~l ye  y d o  _ Aa(b;Lal A d) 

-- A~(b;14 Yd.,c) + R,,(blde I ydA  ~c) 

+ R,,a(ble I ye  A a)  a y~ -- AadR(bc)e 

(48d) 

Y.a(b,a) + ga(ofl'~a) + A.O ?'~a) - Ya;(b ])~cd) ---- 0 (48e) 

Aa(bO~'cd ) + Ra(bcle I Ye'y~d) -- Aa(b;c~'d) = 0 (48f) 

We see that equations (47b) and (47d) are related to the 2-surface-forming 
conditions (26a) and (26b) according to the nature of  the coefficient ?. If  

# 0, we may use a rescaling with 2 = log ? to transform (47b) and (47d) 
into (26a) and (26b). In this instance, the 3-surface case degenerated to the 
2-surface case. In order to have a nondegenerate 3-surface case we require 
that ? =0 ,  which implies fl = 0  = ~ a  by (47b) and (47d). (Note that 
]1 = 0 = f l  = (X a i s  gauge invariant.) Furthermore, either (26a) or (26b) does 
not hold. If  we define 

Uab = Ya;b -- A.b (49a) 

V g c  "~ , , ~  y F a b c  - -  U a ( b ; c )  (49b) 

then for either Uab 4:0  or V,b~ # 0 we have a nondegenerate 3-surface case 
for which [yA, L] Cspan (yA, L}. The definitions (49) show that in principle 
Ira (or Ya) may be Killing with Uab ~ 0 # Vab~. However, we were unable 
to prove that this is true in general, or indeed to make further progress in 
the general case. 

We now examine the special subcase k = l = n = 0 of  ? = 0. Although 
L and W are now 2-surface-forming and commuting, yA is not necessarily 
2-surface-forming with L. [Note that the gauge freedom (43b) only pre- 
serves this subcase if 2 is constant.] Then (47c) and (47e) reduce to 
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2Aa(b;c) -- Ya;(b~) -- Ra(b~)a yd = 0 ( 50a) 

Ra(bdel;a) ye + 2Ra(bcle I Yea ) __ Ra(bddAea) __ Aa(b;ca) = 0 (50b) 

Equation (50a) implies that Y(a,bc) = 0, which means that Y(a,b) is a Killing 
tensor. By (49) and (50) 

Vabc = ua(b;c) = �89 Ua(b;ca ) = Ra(bcle I Ued) (51) 

Even in this special subcase we are unable to determine the general solution 
via (51) or otherwise. We would like to find an example where the matter 
symmetry does not reduce to a Killing symmetry. The integrability condi- 
tions (51) are identically satisfied if Ya is homothetic (i.e., U(~b)= @gab, 
@;a = 0). However, it is not clear to us whether the remaining equations in 
(48), or the higher-order counterparts of (47) and (48), will force Ya to be 
Killing. Note that we have not used any field equtions. 

In summary: We are unable to extend the Berezdivin and Sachs result to 
the 3-surface c a s e - - a n d  clearly the more general cases will be yet  more 
complex. In the 3-surface subcase where L commutes with [yA, L], Y(a;b) is a 
Killing tensor, regardless o f  the gravitational f ieM equations. 

There may be another approach which bypasses the surface-forming 
conditions and allows for a definite answer. The indications from the 
3-surface-forming equations are that the matter symmetry is still likely to 
reduce to a geometrical symmetry, even if not necessarily an isometry. 

6. C O N C L U D I N G  R E M A R K S  

In the case of a macroscopic fluid model, Bonnor and Ellis (1986) 
introduce an observationally and thermodynamically based definition of 
homogeneity--but this dynamical homogeneity does not lead in general to 
a geometrical homogeneity. In the microscopic kinetic model, the dynami- 
cal matter symmetry appears to lead inevitably to a geometrical symmetry. 
At first sight, one may suspect that these contrasting results arise from the 
fact that the microscopic dynamical symmetry is too detailed and stringent, 
whereas the macroscopic dynamical symmetry allows for more latitude. 

However, the problem goes deeper than this first impression. The fact 
is that the dynamical matter symmetries reduce to geometrical symmetries 
only when we impose additional assumptions about their surface-forming 
properties. Without these additional assumptions, it is unclear what hap- 
pens. Even our attempt to relax the 2-surface-forming assumption involves 
a 3-surface-forming assumption. 

These surface-forming assumptions are not merely technical. As we 
pointed out in the 2-surface case, the assumption amounts to assuming that 
the dynamical matter symmetry is simultaneously a dynamical path symmetry 
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(or a modified type of  path symmetry). Thus in fact we remain unclear 
about the essential nature of matter symmetries--because the "pure" 
matter symmetry case appears intractable without simplifying assumptions. 

Path and matter symmetries are very different approaches to dynami- 
cal symmetries in kinetic theory. The path symmetry has no apparent 
observational basis and leads directly to a geometrical symmetry (at least 
in the linear case) (Maartens and Taylor, 1993). It therefore seems to us to 
be a somewhat unsatisfactory concept of dynamical symmetry. In contrast, 
the matter symmetry of Berezdivin and Sachs is observationally based--  
but appears to be too broad without further assumptions. 

The implications of a "pure" matter symmetry remain unknown. 
There may be another approach, alternative to our simplification and 
generalization of the Berezdivin and Sachs approach, which uncovers the 
consequences of a matter symmetry without surface-forming assumptions. 
Alternatively, there may be additional dynamical (as opposed to phase- 
space geometrical) aspects which could naturally be added to the matter 
symmetry definition or used to modify it and which would lead to answers 
about the nature of genuinely dynamical symmetries in kinetic theory. One 
possible approach may be to seek a kinetic foundation for the fluid 
postulate of uniform thermal histories of Bonnor and Ellis (1986). These 
issues are currently under investigation. 
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